

## JARS EDUCATION

**%:** 99672 40893 83696 11389 99671 69853

Shop No. 1,2,3,4 Ayodhya Nagari, Hendre Pada, Badlapur (West), Thane, Maharashtra - 421503

## **Practice Paper**

Time : 2 Hour 11th standard (JEE BASED)
SOME BASIC CONCEPTS OF CHEMISTRY

Total Marks: 200

|    | Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| *  | * SECTION - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [160                                                                                     |
| 1. | 1. Calculate the reported result and number $(41.6325-41.612)$ (A) $0.0205,4$ (B) $0.020,3$ (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | per of significant figure of $0.020, 2$ (D) $0.0205, 3$                                  |
| 2. | 2. The prefix $10^{18}$ is (A) Giga (B) Nano (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mega (D) Exa                                                                             |
| 3. | 3. The unit of the van der Waals gas $\left(P+\frac{an^2}{V^2}\right)(V-nb)=nRT \text{ is :}$ (A) $kgms^{-2}$ (B) $dm^3mol^{-1}$ (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equation parameter $'a'$ in ${ m kg}{ m m}{ m s}^{-1}$ (D) ${ m atm}{ m dm}^6{ m mol}^-$ |
| 4. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |
|    | 5. $ng$ of substance $X$ reacts with $mg$ of substance $X$ and $x$ and $x$ of substance $x$ . This reaction can be represented in the amount of the substance $x$ and $x$ are substance $x$ of the sub | esented as, $X+Y \to R+S$ . The punts of the reactants and the $n=m$ (D) $p=q$           |
| 6. | 6. How many moles of magnesium phosphate, $Mg$ oxygen atoms ?<br>(A) $1.25 \times 10^{-2}$ (B) $2.5 \times 10^{-2}$ (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $g_3(PO_4)_2$ will contain $0.25$ mole of $0.02$ (D) $3.125 	imes 10^{-2}$               |
| 7. | 7. Which is heaviest (A) $25gm$ of mercury (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2moles of water                                                                          |
|    | (C) $2  moles$ of carbon dioxide (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4gm atoms of oxygen                                                                      |

| ٥.                                                                                                                                      | same as                                                                                                                          |                                                              | $g$ glucose $(C_6H_{12}O_6)$ $(M_w$ $N_2H_4(M_w=32g/mol)$ | =180g/mol) IS                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|--|
|                                                                                                                                         | (B) Hydrogen atoms                                                                                                               | (B) Hydrogen atoms in $0.17g$ ammonia $(NH_3)$               |                                                           |                                 |  |
|                                                                                                                                         | (C) Hydrogen atoms                                                                                                               | in $0.30g$ ethane $(C_2I_1)$                                 | $H_6)(M_w=30g/mol)$                                       |                                 |  |
|                                                                                                                                         | (D) Hydrogen atoms                                                                                                               | (D) Hydrogen atoms in $0.03g$ hydrogen, $(H_2)$              |                                                           |                                 |  |
| 9.                                                                                                                                      | 9. The number of atoms in $0.004\ g$ of magnesium are                                                                            |                                                              |                                                           |                                 |  |
|                                                                                                                                         | (A) $4 \times 10^{20}$                                                                                                           | (B) $8 \times 10^{20}$                                       | (C) $10^{20}$                                             | (D) $6.02 \times 10^{20}$       |  |
| 10.                                                                                                                                     | $10\ gms$ . each of $CO_2$ , $NH_3$ and $O_2$ were taken in three separate flasks. What is the correct decreasing order of atoms |                                                              |                                                           |                                 |  |
|                                                                                                                                         | (A) $CO_2$ , $NH_3$ , $O_2$                                                                                                      |                                                              | (B) $NH_3$ , $O_2$ , $CO_2$                               |                                 |  |
|                                                                                                                                         | (C) $O_2$ , $NH_3$ , $CO_2$                                                                                                      |                                                              | (D) $NH_3$ , $CO_2$ , $O_2$                               |                                 |  |
| 11.                                                                                                                                     | How many protons a                                                                                                               | r <mark>e p</mark> resent in 1.8 <i>g N</i>                  | $N_{4}^{+}$ $N_{A}$                                       |                                 |  |
|                                                                                                                                         | (A) 1                                                                                                                            | (B) 1.2                                                      | (C) 1.1                                                   | (D) 11                          |  |
| 12.                                                                                                                                     | One litre hard water required to remove it                                                                                       |                                                              | $Mg^{2+}$ milli equivalent of                             | was <mark>hin</mark> g soda     |  |
|                                                                                                                                         | (A) 1                                                                                                                            | (B) 12.15                                                    | (C) $1 	imes 10^{-3}$                                     | (D) $12.15 \times 10^{-3}$      |  |
| 13.                                                                                                                                     | The number of mole                                                                                                               | cul <mark>e at <math>NTP</math> in <math>1ml</math> (</mark> | of <mark>an id</mark> eal gas <mark>w</mark> ill be       |                                 |  |
|                                                                                                                                         | (A) $6 \times 10^{23}$                                                                                                           | (B) $2.69 \times 10^{19}$                                    | (C) $2.69 \times 10^{23}$                                 | (D) None of these               |  |
| 14.                                                                                                                                     | The molecular weigh                                                                                                              | t of a gas is 45. Its d                                      | ensity at $STP$ is                                        |                                 |  |
|                                                                                                                                         | (A) 22.4                                                                                                                         | (B) 11.2                                                     | (C) 5.7                                                   | (D) 2                           |  |
| 15.                                                                                                                                     | One gram metal $M^{-1}$ What is the atomic w                                                                                     |                                                              | by the passage of 1.81 $	imes$                            | 10 <sup>23</sup> electrons.     |  |
|                                                                                                                                         | (A) 33.35                                                                                                                        | (B) 133.4                                                    | (C) 66.7                                                  | (D) none of these               |  |
| 16. The equivalent mass of a metal is $29.73$ and the vapour density of its chloride is $130.4$ . Find out the atomic mass of the metal |                                                                                                                                  |                                                              |                                                           | <mark>f its chlo</mark> ride is |  |
|                                                                                                                                         | (A) 92.42                                                                                                                        | (B) 80.54                                                    | (C) 150.43                                                | (D) 118.92                      |  |
| 17.                                                                                                                                     | Atomic weight of an is                                                                                                           | element is $x$ . The ad                                      | ctual mass of one atom o                                  | of that element                 |  |
|                                                                                                                                         | (A) $x gram$                                                                                                                     |                                                              |                                                           |                                 |  |
|                                                                                                                                         | (B) <i>x amu</i>                                                                                                                 |                                                              |                                                           |                                 |  |
|                                                                                                                                         | (C) $x 	imes 6.023 	imes 10^{23} \ amu$                                                                                          |                                                              |                                                           |                                 |  |
|                                                                                                                                         | (D) $rac{x}{6.023	imes10^{23}}amu$                                                                                              |                                                              |                                                           |                                 |  |
| 18.                                                                                                                                     | $N_2 H_4 + IO_3^- + 2H^+ + 6$                                                                                                    | $Cl^-	o ICl + N_2 + 3H_2$                                    | $_{2}O$                                                   |                                 |  |
|                                                                                                                                         |                                                                                                                                  |                                                              |                                                           |                                 |  |

|     | (A) 8 and 35.6                                                                                                                                                                                                                                                        |                       | (B) 8 and 87                                                                                     |               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|---------------|
|     | (C) 8 and 53.5                                                                                                                                                                                                                                                        |                       | (D) 16 and 53.5                                                                                  |               |
| 19. | Complete combustion of $0.858~g$ of compound $X$ gives $2.63~g$ of $CO_2$ and $1.28~g$ of $H_2O$ . The lowest molecular mass $X$ can have g                                                                                                                           |                       |                                                                                                  |               |
|     | (A) 43                                                                                                                                                                                                                                                                | (B) 86                | (C) 129                                                                                          | (D) 172       |
| 20. |                                                                                                                                                                                                                                                                       |                       | its molecular formula is $ \hbox{(B) $C_{12}$H}_{20}O_{12} $ $ \hbox{(D) $C_{12}$H}_{22}O_{11} $ |               |
| 21  |                                                                                                                                                                                                                                                                       | d contains 78 % (by w |                                                                                                  | na nercentage |
| 21. | of hydrogen. The rigi<br>[Atomic wt. of C is 12,                                                                                                                                                                                                                      | nt option for the emp | t.) carbon and remaining of this control (R) CII                                                 |               |
|     | (A) CH                                                                                                                                                                                                                                                                |                       | (B) CH <sub>2</sub>                                                                              |               |
|     | (C) CH <sub>3</sub>                                                                                                                                                                                                                                                   |                       | (D) CH <sub>4</sub>                                                                              | 7.5 ( )       |
| 22. | 1.5 mol of $O_2$ combined 24) that has combined                                                                                                                                                                                                                       |                       | $\operatorname{vide}\ MgO.$ The mass of                                                          | Mg (at. mass  |
|     | (A) 72                                                                                                                                                                                                                                                                | (B) 36                | (C) 48                                                                                           | (D) 24        |
| 23. | $100g$ $CaCO_3$ reacts with 1 litre 1 $N$ $HCl.$ On completion of reaction how much weight of $CO_2$ will be obtain $g$                                                                                                                                               |                       |                                                                                                  |               |
|     | (A) 5.5                                                                                                                                                                                                                                                               | (B) 11                | (C) 22                                                                                           | (D) 33        |
| 24. | (A) Molecular weight                                                                                                                                                                                                                                                  | of $KMnO_4$           | xidant in acidic medium                                                                          | is equal to   |
|     | (B) $\frac{1}{2}	imes$ Molecular weight of $KMnO_4$                                                                                                                                                                                                                   |                       |                                                                                                  |               |
|     | (C) $\frac{1}{3} 	imes$ Molecular weight of $KMnO_4$                                                                                                                                                                                                                  |                       |                                                                                                  |               |
|     | (D) $rac{1}{5}	imes$ Molecular weight of $KMnO_4$                                                                                                                                                                                                                    |                       |                                                                                                  |               |
| 25. | When a hydrocarbon A undergoes complete combustion it requires $11$ equivalents of oxygen and produces $4$ equivalents of water. What is the molecular formula of $A$ ? (C) $C_5H_8$ (D) $C_{11}H_8$                                                                  |                       |                                                                                                  |               |
| 26. | In the given reaction, $X+Y+3Z\rightleftarrows XYZ_3$ if one mole of each of $X$ and $Y$ with $0.05mol$ of $Z$ gives compound $XYZ_3$ . (Given : Atomic masses of $X,Y$ and $Z$ are 10,20 and $30amu$ , respectively). The yield of $XYZ_3$ is $g$ .(Nearest integer) |                       |                                                                                                  |               |
|     | (A) 1                                                                                                                                                                                                                                                                 | (B) 3                 | (C) 0                                                                                            | (D) 2         |

The equivalent masses of  $N_2H_4$  and  $KIO_3$  respectively are

| 27. | methylmagnesium iodide. A gas is evolved and is collected and its measured to be $3.1mL$ . The molecular weight of the unknown alcohol [Nearest integer]                                                                                                                        |                                      |                            | nd its volume    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|------------------|
|     | (A) 33                                                                                                                                                                                                                                                                          | (B) 32                               | (C) 31                     | (D) 30           |
| 28. | What will be the volume of $CO_2$ at $NTP$ obtained on heating 10 grams of (90% pure) limestone                                                                                                                                                                                 |                                      |                            |                  |
|     | (A) 22.4 litre                                                                                                                                                                                                                                                                  | (B) 2.016 litre                      | (C) 2.24 <i>litre</i>      | (D) $20.16litre$ |
| 29. | At $STP$ , for complete combustion of $3gC_2H_6$ the required volume of $O_2$ will be litre                                                                                                                                                                                     |                                      |                            |                  |
|     | (A) 78.4                                                                                                                                                                                                                                                                        | (B) 7.84                             | (C) 2.78                   | (D) 6.23         |
| 30. | In the preceeding qu                                                                                                                                                                                                                                                            | estion, the amount o                 | f $Na_2CO_3$ present in t  | he solution is   |
|     | (A) 2.650                                                                                                                                                                                                                                                                       | (B) 1.060                            | (C) 0.530                  | (D) 0.265        |
| 31. | If $1  mole  \text{of}  H_3 PO_x$ is ostatement:-                                                                                                                                                                                                                               | complet <mark>ely</mark> neutralized | by $80gm$ of $NaOH$ , sele | ect the correct  |
|     | (A) $x=2$ and acid is n                                                                                                                                                                                                                                                         | nonobasic                            | (B) $x=3$ and acid is di   | ibasic           |
|     | (C) $x = 4$ and acid is to                                                                                                                                                                                                                                                      | ribasic                              | (D) All are correct        |                  |
| 32. | The mole fraction of urea in an aqueous urea solution containing $900g$ of water is $0.05$ . If the density of the solution is $1.2gcm^{-3}$ , the molarity of urea solution is (Given data: Molar masses of urea and water are $60gmol^{-1}$ and $18gmol^{-1}$ , respectively) |                                      |                            |                  |
|     | (A) 2.50                                                                                                                                                                                                                                                                        | (B) 2.55                             | (C) 2.60                   | (D) 2.98         |
| 33. | The volume of $0.1N$ dibasic acid sufficient to neutralize $1g$ of a base that furnishes $0.04mole$ of $OH^-$ in aqueous solution is                                                                                                                                            |                                      |                            |                  |
|     | (A) 400                                                                                                                                                                                                                                                                         | (B) 600                              | (C) 200                    | (D) 800          |
| 34. | Excess of $NaOH$ ( $aq$ ) was added to $100mL$ of $FeCl_3$ ( $aq$ ) resulting into $2.14g$ of $Fe(OH)_3$ .The molarity of $FeCl_3$ ( $aq$ ) is (Given molar mass of $Fe=56gmol^{-1}$ and molar mass of                                                                          |                                      |                            |                  |
| 35. | A solution of sodium sulphate contains $92g$ of $Na^+$ ions per kilogram of water. The Molality of $Na^+$ ions in that solution in $molkg^{-1}$ is                                                                                                                              |                                      |                            |                  |
|     | (A) 12                                                                                                                                                                                                                                                                          | (B) 4                                | (C) 8                      | (D) 16           |
| 36. | A $20.0mL$ solution containing $0.2g$ impure $H_2O_2$ reacts completely with $0.316g$ of $KMnO_4$ in acid solution. The purity of $H_2O_2($ in $\%)$ is (mol. wt. of $H_2O_2=34;$ mol. wt. of $KMnO_4=158)$                                                                     |                                      |                            |                  |

|     | (A) 90                                                                                                                                                                                                                                               | (B) 95                                                   | (C) 85                              | (D) 80                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|--------------------------------------------|
| 37. | $4.5g$ of compound $A(MW=90)$ was used to make $250mL$ of its aqueous solution. The molarity of the solution in $M$ is $x\times 10^{-1}$ . The value of $x$ is (Rounded off to the nearest integer)                                                  |                                                          |                                     |                                            |
|     | (A) 1                                                                                                                                                                                                                                                | (B) 2                                                    | (C) 3                               | (D) 4                                      |
| 38. | Molarity $(M)$ of an aqueous solution containing $xg$ of anhyd. $CuSO_4$ in $500  mL$ solution at $32^{\circ}C$ is $2\times 10^{-1}M$ . Its molality will be $\times 10^{-3}  m$ (nearest integer). [Given density of the solution $= 1.25  g/mL$ .] |                                                          |                                     |                                            |
|     | (A) 160                                                                                                                                                                                                                                              | (B) 164                                                  | (C) 167                             | (D) 168                                    |
| 39. |                                                                                                                                                                                                                                                      | $rac{dH_3}{dH_3}$ gas at $STP$ would hydroxide solution |                                     | are $100ml$ of $2.5$ molal                 |
|     | (A) 0.056                                                                                                                                                                                                                                            | (B) 0.56                                                 | (C) 5.6                             | (D) 11.2                                   |
| 40. |                                                                                                                                                                                                                                                      |                                                          |                                     | ction what will be the and $400mL0.25MHCl$ |
|     | (A) 4.05                                                                                                                                                                                                                                             | (B) 5.55                                                 | (C) 11.1                            | (D) 16.65                                  |
| *   | * SECTION - B                                                                                                                                                                                                                                        |                                                          |                                     |                                            |
| 41. | The normality of 4                                                                                                                                                                                                                                   | $1\% \; (w/V) \; NaOH \; is$                             |                                     |                                            |
| 42. | . $1.25g$ of a solid dibasic acid is completely neutralised by $25ml$ of $0.25$ molar $Ba(OH)_2$ solution. Molecular mass of the acid is                                                                                                             |                                                          |                                     |                                            |
| 43. | The mole fraction of a solute in a $100$ molal aqueous solution $\times 10^{-2}$ (Round off to the Nearest Integer). [Given : Atomic masses : $H:1.0u,O:16.0u$ ]                                                                                     |                                                          |                                     |                                            |
| 44. | The number of at integer)                                                                                                                                                                                                                            | oms in 8 g of sodium                                     | is ${ m x} 	imes 10^{23}.$ The valu | ue of x is (Nearest                        |
|     | [ Given : $N_{A} = 6.02 \times 10^{23}  \mathrm{mol}^{-1}$ , Atomic mass of $\mathrm{Na} = 23.0  \mathrm{u}$ ]                                                                                                                                       |                                                          |                                     |                                            |
| 45. | The volume (in $mL$ ) of $0.1N$ $NaOH$ required to neutralise $10mL$ of $0.1N$ phosphinic acid is                                                                                                                                                    |                                                          |                                     |                                            |
| 46. | How much water should be added to $200c.c$ of semi normal solution of $NaOH$ to make it exactly deci normal $cc$                                                                                                                                     |                                                          |                                     |                                            |
| 47. | What volume of oxygen gas $(O_2)$ measured at $0^{\circ}C$ and $1atm$ , is needed to burn completely $1L$ of propane gas $(C_3H_8)$ measured under the same conditions? L                                                                            |                                                          |                                     |                                            |
| 48. | Sulphur forms the $SCl_2$ is $g/mol$                                                                                                                                                                                                                 | e chlorides $S_2Cl_2$ and                                | $SCl_2$ . The equivale              | nt mass of sulphur in                      |

- 49. How many g of a dibasic acid (Mol. wt. =200) should be present in  $100\,ml$  of its aqueous solution to give decinormal strength ...... g
- 50. The ratio of number of oxygen atoms (O) in  $16.0\,g$  ozone  $(O_3),\,28.0\,g$  carbon monoxide (CO) and 16.0 oxygen  $(O_2)$  is (Atomic mass :C=12,O=16 and Avogadro's constant  $N_A=6.0\times 10^{23}\,mol^{-1}$ )

-----

